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Abstract

A fundamental challenge for all communication systemsjrezgred or living, is the prob-
lem of achieving efficient, secure, and error-free commation over noisy channels. Infor-
mation theoretic principals have been used to develop teféecoding theory algorithms to
successfully transmit information in engineering systerh&/ing systems also successfully
transmit biological information through genetic processach as replication, transcription,
and translation, where the genome of an organism is the m@mdéthe transmission.

Decoding of received bit streams is fairly straightforwarden the channel encoding al-
gorithms are efficient and known. If the encoding scheme Ishawn or part of the data is
missing or intercepted, how would one design a viable dacimid¢he received transmission?
For such systems blind reconstruction of the encodingftiagsystem would be a vital step in
recovering the original message. Communication engirmaassnot frequently encounter this
situation, but for computational biologists and biotedogést this is an immediate challenge.

The goal of this work is to develop methods for detecting @&ednstructing the encoder/decoder

system for engineered and biological data. Building on &sdtrengths in discrete mathemat-
ics, algorithms, and communication theory, we use lineagimming and will use evolution-
ary computing techniques to construct efficient algorittfionsnodeling the coding system for
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minimally errored engineered data stream and genomic aemyl DNA and RNA sequences.
The objective for the initial phase of this project is to douast solid parallels between biolog-
ical literature and fundamental elements of communicatieory. In this light, the milestones
for FY2003 were focused on defining genetic channel chaiiatitss and providing an initial
approximation for key parameters, including coding ratepmary length, and minimum dis-
tance values. A secondary objective addressed the quedtd®iermining similar parameters
for a received, noisy, error-control encoded data set. Hitad to these goals, we initiated
exploration of algorithmic approaches to determine if eadst could be approximated with
an error-control code and performed initial investigasiorto optimization based methodolgies
for extracting the encoding algorithm given the coding @ftan encoded noise-free and noisy
data stream.
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Summary

The initial phase of this work employed a three prong apgrdacaddress the problem of reverse
engineering error control (EC) encoded data. Approach#sded: 1) Information theoretic studies
of the genetic channel and EC encoded data streams, 2) @rgptoc exploration of RNA data
streams, and 3) Investigation of the reverse engineerinlglgm from an optimization framework.

In engineering systems, channel characteristics deterthm EC coding used. We investigate
mutation rates for the replication process (modeled asran iatroducing communication channel)
of various organisms. From analysis of mutagenesis datajotee 1) The relationship between
prokaryotic mutation rates and genome size exhibits poawrdehavior. This does not hold for
higher eukaryotes. 2) A link may exist between the mutatite 10f a biological agent and the
agent’s pathogenicity. Initial findings show that the Bgitmal Safety Level (BSL)-1 category con-
tained the agent with the lowest error rate while BSL-3 cimeizh the agent with the noisiest genetic
channel. 3) Based on mutation rates we calculated the gesteinnel capacity. Although there is
very little difference among the organisms studied, thannkhcapacity of higher eukaryotes tends
to be slightly larger than that of the DNA micorbes. Ovenailial channel capacity calculations im-
ply a very high coding rate, one with minimal redundancy pugof the form(n=N,k=N—1).

To determine EC coding parameters, we developed a methoetemminingk for an(n= N, k) lin-
ear block code. The (7,4) Hamming, (16,11) Hamming, andl@2;odebooks were analyzed using
a variation of the Shannon entropy. Codebook codewordsaswd randomly generatéld= 0..5
error bits. Entropic profiles asymptotically approachedext k values even in the presence of
noise.

The goal of our cryptographic study was to search RNA strdamsmathematical relationships
or exploitable patterns. These relationships and pattéritey exist, will improve our understand-
ing of how biological sequences store, process and handnge data. Initial work was performed
on Escherichia coligenes and leader sequences. Analysis methods included:

1. Lexicographical sorting to find matching sub-streams alptdin statistics on matching sub-
string lengths;
2. One and two element Markov models to determine if shortraompatterns exist;

3. Finding linear generators for RNA sequences mapped @33 Fo determine the existence
of hidden linear relationships;

4. Analyzing the effect of various mappings of nucleotidedsato the elements in GE), to

determine if there are mathematical reasons to choose opgimgeover another.

Lexicographical sorting found that leader sequences ragel matching sub-streams on average
than the fullE. coli gene sequence. The mean maximal matching substring leragh/@b for
non-translated leader sequences (intergenic sequertc@8)for the translated leader sequences,
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and 432 for the complete gene sequence. Currently, no obviotsrpatwere found using Markov
modeling. Additional studies are needed. The final two testse intimately connected. The
research showed that the linearity of a stream depends onh®hbases are mapped. In particular,
the overall linearity of the stream (a ratio of the number leheents generated by a polynomial
over the degree of its generating polynomial) depends onlwihéase is mapped to the zero element.
Mapping cytosine to the zero element (the other bases carapped to any of the remaining three
elements) gave the highest linearity ratios.

The problem of reconstructing an encoder/decoder systenbeaviewed as an optimization
problem. We have formulated the problem as an integer pnogia), which can be solved exactly
using available branch-and-bound technology. At presbese algorithms effectively reconstruct
encoders/decoders for error-free channels. Howevenglsitigf is a major issue, as we are currently
unable to solve the reconstruction problem for large, nolsgnnels. There are two issues with
scalability. The first is the strength of the lower bound, ebhin the current formulation appears
quite weak. This is causing a huge branch-and-bound tref, that nodes can rarely be pruned.
The second is the memory consumption of the IP formulatiefaied to the number of nodes),
which scales as the product of codeword lengthand the number of codewords. To achieve
scalability for realistically sized biological system#ferent problem formulations and advances in
solver technology are required.
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Detection and Reconstruction of Error
Control Codesfor Engineered and
Biological Regulatory Systems

1 Introduction

Years of biological experiments have produced descriptaftwhat occurs during the genetic repli-
cation, transcription, and translation processes. Irstagion for instance, molecular biologists have
identified key regions upstream and downstream of the fimtiacodon that affect the ribosome’s
ability to initiate translation and the rate at which traigln initiation occurs. The specific effects
of base compaosition and distance of key bases from thetioitigite is not completely understood
and has not been mathematically quantified. If we were abtenstruct a mathematical model to
describe the regulatory regions on messenger RNA (mRNAghvbontrol ribosomal attachment
and the rate of translation initiation, we could recondtamtimal translation initiation sites. These
optimal sites can be used in transgenic protein productismg an organism to produce proteins
foreign to that organism’s genome), increasing the exmesH biosensor reporter proteins, and
regulating the expression of proteins useful for bioreratiolh in microbes of interest to the Depart-
ment of Energy (DOE).

Compiling a set of optimal regulatory sequences would pexymerimentally intractable. If we
limited our search of viable translation regulatory sitesikty base sequences, we would examine
at least 58 sequences (assuming only the first base of the initiationrc@mivariable). Experimental
evaluation of such a large number of sequences is not a \oglilen for biologists or biotechnolo-
gists. Developing a mathematical framework that corrslase composition and base location in
regulatory sequences with corresponding genetic regylatésponse will provide a mathematically
detailed understanding of genetic regulation, produceokftw optimizing sequences involved in
genetic regulatory control, and contribute to the undaditay of genetic networks - a key aspect of
DOE’s Genomes to Life program. The understanding gained fios work will also benefit sev-
eral Sandia National Laboratories (SNL) research endsaimriuding: development of biological
agents for bio-weapons defense and development of biabgidbstrates for bio/nano-technology
systems.

1.1 EC Coding Methods for Genomic Sequence and System Analysis

Molecular biology has provided significant insights inte tmechanisms of translation initiation.
Although a general consensus mRNA leader sequence canrbelébed based on experimental
data [26], we still lack a mathematical model that corredaigecific MRNA sequence with a specific
rate of translation initiation. To this end, we will view tneRNA leader region (nucleotides from
30 to +30 inclusive) as points or codewords in a high dimeraispace, where each point has an
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associated translation efficiency. The hypothesis of aum@rk is that nucleotide variations in the
ribosome binding site region can be quantified using an E@hgolamework and the effects of
these variations on translation initiation can be deteeahiand predicted using such a framework.
Though the idea of biological coding spheres and biologioding theory are not new [31, 24, 25, 2]
a rigorous development of biological codes for quantifaratnd optimization of regulatory sites is
novel.

Application of coding theory to genetic data dates back ®lgte 1950s [11, 10] with the
deciphering of the genetic code. Since then, EC coding rdstiave been applied to genetic
sequence analysis and classification, biological chipgdesis well as analysis of genetic regulatory
processes. Sengupta and Tompa approach the problem ofaotmyodesign from a combinatorial
design framework and use EC coding methods to increase thléyfidf oligo array construction
[27]. Reif and LaBean propose EC coding-based methods éodélrelopment of error-correction
strands for repairing errors in DNA chips [21].

Several researchers have moved beyond the qualitative Isnofibiological communication
and attempted to determine the existence of EC codes fomgersequences [31, 17, 23, 13, 16].
Liebovitch et al. and Rosen and Moore [13, 23] both develdegetiniques to determine the ex-
istence of EC code for genomic sequence. Neither found eeelef EC codes for the sequences
tested. Given the computational limitations of the studgpbvitch et al. suggest that a more com-
prehensive examination would be required. Both methodssiiyate a subset of linear block codes
and do not consider convolutional coding properties nooactfor the inherent noise in genomic
sequences. Extending beyond specific genomic regions gadrsees, MacDonaill develops an EC
coding model for nucleic acid sequences in general [16]. &egdroposed a four-bit, binary parity
check EC code for genetic sequences based on chemical fiespefr the nucleotide bases. As
more researchers explore the EC coding properties of gesegjuences and apply these methods
to computational biology and molecular computing problethe information and coding theoretic
properties of genetic systems can be further understoog@tedtially exploited for bioengineering
applications.

In the remainder of this section we provide a basic intraduacto coding theory and discuss
parallels between coding theory and genetic processes. n@kiethree sections describe initial
approaches explored in this work. Section 2 presents irdtiom theoretic studies of microbial and
eukaryotic replication and EC block codes. Section 3 diessrcryptographic analysis of mRNA
leader sequences altscherichia coligene sequences and Section 4 analyzes inverse EC coding
from an optimization framework. The final section of this egpsummarizes our findings and
discusses future work.

1.2 Overview of Coding Theory

The need for coding theory and its techniques stems from eled for error control mechanisms
in a communication system. The system in Figure 1 illussréi@wv coding is incorporated into a

12



typical communication system [29]. In an engineering comitation system, digitized informa-

Channel Digitized
Modulation |- - 9

Encoding Information
Y
Channel |[<«—— Errors
Y
) Channel Receivec
Demodulation =  Decoding Informati

Figure 1. Communication system that incorporates coding .

tion is encoded by the channel (error control) encoder aadased for transmission (modulation).
The encoded stream is transmitted through a potentiallgynchannel where the sequence can be
corrupted in a random fashion. The output of the channelygheived message, is prepared for
decoding (demodulation) and then decoded by the chanmel @ntrol) decoder [29, 5]. The de-
coding process involves removal and possibly correctioarairs introduced during transmission.
The decoding mechanism can only cope with errors that doxuatesl the code’s error correction
capability.

The channel encoder processes the digitized informatamédrby frame. An input frame con-
sists of a fixed numbek, of information symbols that are presented to the encodee dutput
frame, the frame to be transmitted, consists @dliso fixed) output symbols, wherds larger than
k. Since the number of output symbols is greater than the nuailieput symbols, redundancy has
been introduced [29]. The coding rate,

R = k/n 1)

is the the ratio of the number of input symbols in a frame torthmber of output symbols in a
frame. The lower the coding rate, the greater the degreedofndancy [29, 15]. The encoder
combines the input symbols and introduces additional sysritesed on a deterministic algorithm.
This results in a mapping of input frames into a set of outpaines known as codewords. The
type of output produced is determined by the number of inauhés used in the encoding process.
Block coding uses only the current input frame. Convoluioroding uses the current frame plus
m previous input frames [29, 5].

The communication channel is the medium through which tfeamation is transmitted to the
receiver. The channel can corrupt the transmitted mess$mgagh attenuation, distortion, inter-
ference, and addition of noise. Channels can be charaatleaig memoryless, symmetric, additive
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white Gaussian noise (AWGN), bursty, or as compound chan@annel characteristics determine
the type of EC encoding method used in the engineering sy@em

The channel decoder receives a series of frames that, givemrarless transmitted sequence,
should be composed only of codewords. If the received seguleas been corrupted during trans-
mission, there will be sequences which do not map uniquednyccodewords. This is used to detect
the presence of errors. Decoding algorithms are then useetéomine the original codeword and
correct the error. When the error rate exceeds the erroectmn capacity of the code, two things
can occur. The decoder may be able to detect the error but nidyerable to find a unique solu-
tion and thus correct the error or, the decoder may not détectrror because the corruption has
mapped one legal codeword into another legal codeword. Ttbod of decoding is dependent on
the method of encoding.

The decoding of received bit streams is fairly straightfmmvwhen the channel encoding al-
gorithms are efficient and known. What if the encoding sch&nenknown or part of the data
is missing? How would one design a viable decoder for theiveddransmission? Communica-
tion engineers may not frequently encounter this situatiom for computational biology this is the
immediate challenge and barrier to understanding the wvastiat of sequence data produced by
genome sequencing projects. To determine the algorithm logdiving systems to transmit vital
genetic information, several researchers have exploegadhallel between the flow of genetic in-
formation in biological systems and the flow of informationeingineering communication systems
[9, 31, 22, 2, 17].

1.3 TheNeed for EC Codingin Living Systems

Battail [2] argues, similar to Eigen [8], that for Dawkins'aatel of evolution to be tractable, error-
correction coding must be present in the genetic replingpimcess. According to Battail, proof-
reading, a result of the error avoidance mechanism sughbgtgenome replication literature, does
not correct errors present in the original genetic messagéy: a genetic error correction mechanism
can guarantee reliable message regeneration in the peeséecrors or mutations due to thermal
noise, radioactivity, and cosmic rays [2].

Battail further asserts that the need for error protectiecomes obvious when one considers
that the number of errors inlasymbol message that has been replicatéthes is comparable to
the number of errors in an un-replicated k-symbol message. For a given error rate, the number
of times an organism undergoes replication approachesfimiténnumber. Hence for a message
to remain reliable within an organism’s life cycle (not tomtien evolutionary information trans-
mission which occurs over thousands of years) the messagehave strong error protection [2].
The survival of an organism necessitates the existenceadiadle information replication process.
Therefore error-correcting codes must be used in rephicatr in another process of information
regeneration that precedes replication [2].
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1.4 Biological Communication System Frameworks

The relationship between the error control coding processpaiotein translation may not be ob-
vious. Figure 2 illustrates the central dogma of genetidse Gentral premise of genetics is that

DNA

'

Replication

Protein

Figure 2. Central Dogma of Genetics

genes are perpetuated in the form of nucleic acid sequentégrtion once expressed as proteins
[12]. Three-base nucleic acid sequences, called codosgndde amino acids. There are sixty-four
possible codons and twenty amino acids. Hence differerarc®dan specify the same amino acid.
This codon/amino acid designation is known as the genetie ¢80]. There are three processes
which transform genes from nucleic acid sequences to fomatiproteins.

e Stage 1: Replication - A DNA sequence replicates to form wemtical DNA sequence

e Stage 2: Transcription - Using one of the DNA strands as a lmgequence, the infor-
mation contained in the DNA sequence is transcribed to ité Rbuivalence. The result is
a messenger RNA (mMRNA) sequence which contains the compleseguence of the DNA
template strand. The difference is that in mMRNA, Uracil agpk Thymine bases [30].

e Stage 3: Translation - The mRNA serves as a template for pnoduolypeptide chains
or proteins. A polypeptide chain is a sequence of amino awidsd together by peptide
bonds [12]. The ribosome is an important part of the mechamihich translates mRNA
information into proteins.

Researchers, such as Hubert Yockey who performed fundaimeméstigations of error cor-
recting coding properties of genetic systems, have exgltte EC coding properties of genetic
sequences and systems [31, 17, 23, 13, 16]. Several reseaiftdive developed communication
models for genetic processes [9, 31, 22, 2, 19]. Our analbggmetic information transmission to
an engineering communication system is illustrated in fed1 The un-replicated DNA sequence
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Figure 3. Central Dogma of Genetics as a Coding System

is the output of an EC genetic encoder that adds redundarncli¢oently noisy genetic information.

The noise in the source can be thought of as mutations traadfirom parent to offspring. The ge-
netic channel is the DNA replication process during whidglemrare introduced into the nucleotide
sequence [19]. Incorporating the nested coding idea pegpbyg Battail [2], EC decoding occurs
in three phases represented by transcription, translatibation, and translation elongation plus
termination.

1.5 Reverse Engineeringthe EC Code

Coding theory algorithms can serve as powerful patterngmizers for annotating biologically
active sites of a genome, and also as pattern generatosathatathematically represent the genetic
process and macromolecules that operate on the genomiersegof interest. The mathematical
representation of a convolutional code is also the mathieatahodel for the digital system that
produces that signal (or pattern) and all other signalscéestsa with that system.

Development of coding theoretic frameworks for moleculedgy is an ongoing endeavor.
Although the existence of redundancy in genetic sequerscascepted and the possibility of that
redundancy for error correction and control is being exgaaand exploited, mathematically deter-
mining the encoding algorithm particularly for regulatasgions remains a major research chal-
lenge. To this end we propose to determine the genetic eridededer by reconstructing the
encoder from the mRNA sequence which we model as a noisywest&C encoded sequence.

Development of blind reconstruction methods can be usefdhta transmission systems where
the encoding algorithm is unknown. When a message is reteilie redundancy from the error-
control encoder must be algorithmically removed prior tdtfar processing of the message. If the
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EC coding information is missing then the receiver must begbssibly noisy data to “guess” at the
underlying encoding system. We are faced with a parallaiage when analyzing genomic data.
The information produced by genome projects hold the keyttetstanding how an organism func-
tions from genetic to cellular level behavior. Identifyiggne locations and regulatory regions are
fundamental steps in the “genome to life” process. It is easible to experimentally annotate all of
an organisms regulatory regions hence the need for conqmaéatools for accurately deciphering
the information contained in genetic sequences. The niyjoffigene annotation techniques rely on
patterns and statistical characteristics of the genomenfatel construction. While these methods
yield viable results, they do not offer insight into the urigieg mechanics of the genetic process.
By devising a method for reconstructing the EC code of a veckinoisy, signal we will provide a
way to:

1. Determine the encoder/decoder model for engineeredragsivhere the encoding algorithm
is unknown. Addressing the problem for the engineeringesggtrovides a baseline for de-
veloping and testing computational models for biologigaitems.

2. Construct mathematical models of molecular machinesronaolecules such as ribosome,
RNA polymerase, and initiation factors) involved in theukgion of genetic processes.

During the initial phase of this project we use informatibedry, cryptography, and optimization
techniques to investigate methods for reconstructing thedtle of engineered and genetic data.

2 Information Theoretic Studies

The genetic communication system depicted in Figure 3 sgpits the error introducing transmis-
sion channel as the replication process. Shannon’s chaadilg theorem asserts that there exists a
channel code with rate = k/n such that the probability of decoding error becomes artditramall
asnincreases [4, 28, 1]. The capacity of a transmission chaftinelmaximum data transmission
rate) is dependent on the error rate of the chamnglthe probability of the channel transforming
symboli into symbolj for i # j. In order to determine appropriate EC coding parametergdioetic
regulatory sequences, we must characterize the replicaliannel and the error or mutation rates
associated with replication. Mutation derived capacity®a can suggef and from that plausible

n andk values for genetic systems. In addition to a mutation bappdoach we explore a Shannon
entropy-based approach to determifer an(n = N, k) code.

2.1 Mutation and Replication Channel Capacity

Mutations are replication errors that remain or are missegdnetic proofreading mechanisms.
Drake et al. [7, 6, 3] have performed extensive research aalysis of mutation rates in prokary-
otic and eukaryotic organisms. Based on mutagenesis sjutley note that mutation rate in RNA
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viruses range from one per genome per replication for lyitiases to 0.1 per geneome per replica-
tion for retroviruses and retrotransposons. DNA microlbesre complex and typically larger than
RNA viruses, have mutation rates g&) per genome per replication. Moving higher still to the
larger more complex eukaryotic organism, higher eukasybtese mutation rates ranging from 0.1
to 100 per geneome per sexual generation and a mutationfr@%g per cell division per effective
genome. The effective genome is the portion of the genomeenteatations are most lethal (i.e.
genes or exons) [7]. In general, while RNA viruses have figantly higher mutation or channel
error rates, DNA microbes have error rates relatively simib the mutation rate in the effective
genome of higher eukaryotes. The question arises whetldeh@m organism complexity (which
we can loosely approximate using genome size) is relatedplication channel fidelity. Drake
investigates this for DNA microbes by analyzing the log-filgt of base mutation rates as a func-
tion of genome size [6]. We replicate this test using the lmag&ation and genome size data from
Drake et al. [7] for both the DNA microbes and the higher ey&tes. Figure 4 and Figure 5 show
the log-log plots of genome size as a function of base mutdto DNA microbes and eukaryotic
organisms, respectively. The log-log plots for the DNA rolmes are equivalent to Drake et al.'s

DNA Microbes: Mutation rates vs. Genome Size
8 T T T T
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Figure 4. Comparison of microbial genome mutation rate to genome
size

results as would be expected. The relationship between N Ricrobes’ mutation rates and
genome size exhibits power law behavior. We do not see aasifmdhavior for higher eukaryotes
although the eukaryotic data set contained a relativly smathber of organisms. As concluded by
Drake et al. and illustrated in Figure 4 , there is an inveetationship between genome sig,and
an organism’s base mutation ragg, This inverse relationship is evident for the higher eukteyg
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Higher Eukaryotes: Mutation rates vs. Genome Size
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Figure 5. Comparison of eukaryotic genome mutation rate to genome
size

as well.

Based on mutation rates in Drake et al. [7] we calculate timetyechannel capacity. Assuming
a discrete memoryless channel (DMC), the capacity of thareleC, is the maximum reduction in
uncertainty of the inpuK given knowledge oY [4]:

C =spl(X,Y) )

where
L(X,Y) =H(X) =H(X]Y) =H(Y) = H(Y[X) 3)

The Shannon entropyl (X) andH (Y|X) are defined as:

Z p(xi)logzp(x; (4)

H(Y[X) = ZZ P(%, Yj)10g2P(Y; %) (5)

The probability p(y;|x«) is the channel error probability. b(y|x) is specified by the mutation
error ratepy then p(yj[x) = Wb, Vy # x and p(yj|%) = 1 — Wy, ¥y = X (Wherey, is the muta-

tion rate per base per replication). We assume two diffecbahnel transition matrices. For the
first case, Table 1, we assume all base mutations are equak hetransition mutation (purine to
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purine,AdeningA) — GuaninéG) and pyrimidine to pyrimidineCytosing¢C) < ThymingT )) and
a transversion mutation (purine to pyrimidin@, G) — (C, T) and pyrimidine to purine(C, T) —
(A,G) ) are equally probable. The second case, Table 2, we assatgahsition mutations are

Table 1. Channel transition probability assuming p(Transition But
tion)=p(Transversion Mutation)

A G C T
Ll p
e
e L B
T 3 3 7 |1k

twice as probable as transversion mutations. Figure 6 aguréi7 show the replication channel

Table 2. Channel transition probability assuming p(Transition dut
tion) #p(Transversion Mutation)

A G C T
All—p| 2 Ho Ho
. "
G| 5 |1-Ww| ¥ ¥
c| 2 5 1t 2
A 82 [iw

capacity of the organism as a function of the log of the oig/ars genome size for DNA microbes
and higher eukaryotes using values from Drake et al. [7] and channel transition prolidssl
from Table 1. Figure 8 shows the channel capacity for DNA obes and higher eukaryotes com-
bined. There is very little difference among the organisindisd, the channel capacity of higher
eukaryotes tends to be slightly larger than that of the DNA&arbes. The initial channel capacity
calculations imply a very high coding rate, one with minimedundancy of the form (n=N,k=N-1).
Further calculations are necessary and the number of atipliccycles need to be taken into consid-
eration since mutation errors are cumulative and the chanoéel should reflect this. Calculations
using Table 2 channel transition probabilities yield sanilesults.

2.2 Channel Capacity and Pathogenicity

Since lower error rates indicate a higher channel capa€igyre 8 suggests that in general, in-
creased organism complexity implies increased transamdsielity. One could extrapolate further
and suggest that this implies that the need for error corgn@duced as complexity increases. On
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Replication Channel Capacity of DNA Microbes
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Figure 6. Capacity of prokaryotic replication channels
Replication Channel Capacity of Higher Eukaryotes
2 T T T T T
ok > N
22+ B
(%)
1]
Q.
IS
o
©
c
g
c 2F T
= u]
c
o
]
L
o
[5]
x2r- -
2l B
* C. elegans
& Drosophila
O Mouse
> Human
2 1 1 1 1 1 1 1 1 I
7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8

log Genome size

Figure 7. Capacity of eukaryotic replication channels

21



Replication Channel Capacity of DNA Microbes (o) and Higher Eukaryotes(*)
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Figure 8. Comparison of prokaryotic and eukaryotic replication chan
nel capacities

the contrary, we assert that the higher fidelity is due tortberiporation of redundancy for error con-
trol purposes. Therefore less complex organisms withdticEnt error control encoded into their
genomes (resulting in a smaller genome size) must explitidorporate a redundancy method in
order to survive. The large number of virons present in agcitefd cell or phages/plasmids present
in microbes can be viewed as the less complex organism’saddtin explicitly incorporating error
control. If we were transmitting over a noisy engineeringmanel and were unable to modify our
message in order to incorporate a stronger error controtighgn, a simple way to increase fidelity
is to transmit the message multiple times, thereby effelstiincorporating error control into our
system.

Another way to combat the problem of transmission over ayndignnel without modifying
the message is, if the alternative exists, transmit overaarodl with lower noise. It appears this
is the route viruses, phages, and plasmids exploit whenitisgyt into their host genome. RNA
viruses have relatively low complexity and high mutatiotesa Drake et al. note that the RNA
virus/retrovirus populations are “likely to be extinguisshwhen mutation rates are increased to a
few fold over one [7].” Lytic RNA viruses have a mutation ratel/genome/replication. But retro-
viruses and retrotransposons have a mutation rate of @drgefreplication, an order of magnitude
difference. Retroviruses insert their reverse-trangdrithromosome into the chromosome of a dif-
ferent cell and retrotransposons insert their reversestrébed chromosome into the chromosome
of the cell in which they reside. While the lytic RNA virus phaces multiple copies of itself using a
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noisy channel, retroviruses and retrotransposons elesktthe host’s less noisy replication channel
and therefore reduces the need for large copies or retrasems of their genetic information.

Similar behavior is seen in the F plasmid and Bacteriopidgéection ofE. coli. As a prophage
Bacteriophage and non-conjugating F plasmid both have mutation ratessalgunt to their host’s,
but during lytic replication, Bacteriophage has a higher mutation rate. Likewise F plasmid’s
mutation rate is five to twenty times higher during conjugafi7]. This supports our assertion that,
similar to RNA viruses, lower complexity organisms incamge error control by alternate means in
order to successfully transmit their genetic information.

Drake et al. suggest that a lytic virus’ high mutation rateymave a strong link to its low infec-
tivity. Beyond survival, we speculate that mutation rateg/metermine an organisms pathogenicity
or a host's susceptibility to infection. Given the trendtfioore complex organisms to have less noisy
transmission channels and lower complexity organismdd@ly the pathogenic agents) tendency
towards noisier transmission channels, we hypothesiZettibamore noisy the agent’s replication
channel in relation to the host’s channel the more virulbatagent. Virulence is the agents degree
of pathogenicity. There are various values used to deteriannagents virulence:

LD50: The number of organisms/agents needed to Kill fiftkcpet of the host organism.
ID50: The number of organisms/agents needed to causeiorfdntfifty percent of the host or-

ganism.

During this initial phase we were unable to find sufficientilence information for various hosts to
test our hypothesis but indirect virulence informationdgents potentially harmful to humans was
readily available. Potential human pathogens are cladsiféing Biological Safety Levels (BSL)
designations. There are four levels:

BSL-1: The agent is not associated with disease in healtblf admans.

BSL-2: The agent is associated with a disease which is raelpus and for which preventive
measures or therapeutic interventions are often available

BSL-3: The agent is associated with a serious or lethal deséar which preventive measures or
therapeutic interventions may be available.

BSL-4: The agent is likely to cause serious or lethal humaratie for which preventive measures
or therapeutic interventions are not usually available.

Using mutation data from Drake et al. [7] and BSL classifmatdata from the Center for
Disease Control (CDC) website we looked at the genome routaditegy by BSL levels (Figure 9)
for the organisms in Table 3.

Figure 9 suggests that a link may exist between the mutagittnaf a biological agent and the
agent’s pathogenicity. The BSL-1 category contalscoli K-12, the agent with the lowest error
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Table 3. Human pathogens classified by Biological Safety Levels

Pathogens

BSL-1 Escherichia colK-12

BSL-2 | Murine leukemia virus (MLV), Bovine leukemia virus (BLV
Rous sarcoma virus (RSV), Polio virus, Influenza A

BSL-3 Human immunodeficiency virus type 1 (HIV-1),
Vesicular stomatitis virus (VSV)

BSL Classification vs. Relative Mutation Rate Per Genome Per Replication
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Figure 9. Micorbial genome mutation rates and their BSL classificatio
level
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rate while BSL-3 contains VSV, the agent with the noisiestaiie channel. Further investigation
with larger data sets for various host/pathogen virulereta @5 needed in order to draw a more
definitive conclusion. Virulence data witlDsg andlDsg values need to be compiled from literature
and should provide better insight into the relationshipveein virulence and host/pathogen channel
fidelity.

2.3 Entropic Methodsfor Deter mining k

To determine EC coding parameters, we developed a methadeferminingk for an (n = N, k)
linear block code. Given afm, k) codebook, the amount of information contained in the codkl®
k bits. We began by calculating the entropy of each of phsitions in the codewordlsl,i”’k, fori=
1..n. The Shannon entropy of the (n,k) codebook was then defined as

n
HM =5 H™ (6)

Initial calculations yieldedH ™k ~ n for each codebook set tested. We varied the entropy caitondat
to evaluate positional entropy for varying window sigg= 1..n. The assumption is asx — k the
averageH "k — k where, for a fixedv, the average entropy is:

K 1 n—wg+1i+wyg—1 nk
Haw = ————— Z Z H 7
Y 7

We calculateHa\,g for the (7,4) Hammlng (16,11) Hamming, and a (32,17) lindack codebooks.

Figure 10 and Figure 11 show the raﬂyF (whereHmaX W) andHa\,g for all estimates ok for the

(7,4) Hamming codebook. Figure 12 and Figure 13 show simdlsults for the (16,11) Hamming
codebook. As illustrated in the results, the modified entregdculations were also applied to (7,4)
and (16,11) Hamming codebooks containing randomly geeet= 0..5 error bits. Aswy — k

the average entropy proﬂlblavg, asymptotically approachdsand the ratlo—avwg drops below one.

Forwy > k the average entropy value does not exceed the cdtreaite. Further investigation is
necessary to determine whether the slope of the entromyaati provide any information regarding
the amount of noise present in the codebook set. Perforniinidas tests for the (32,17) code is
significantly more computationally expensive than for thg) or (16,11) code, although we suspect
similar behavior would occur. This approach is a promisingthod for determining given an
(n=N,k) linear block code. The next step is to extend the currentagmbr and develop a method
to determinen for an (n,k) linear block code. It is also necessary to expand and apjdyece
methods to the analysis of convolutional codebooks.
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Shannon Entropy Ratios Given (7,k) Hamming Code
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Figure 10. Shannon entropy ratios for (7,4) Hamming Code
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3 Cryptographic Analysis of RNA Data Streams

The goal of this section of research is to analyze RNA strdamsmbedded information theoretic
relationships. We perform several initial tests on trameslaand non-translated initiation sequences
(with thirty bases before and twenty seven bases after ttiation sequence, for a total of sixty-
base strings) and on compldEecoli gene sequences. Simple tests, such as short Markov maqdeling
finding matching substreams, and positional counts areomeed on files with multiple related
streams. More complex tests, such as finding linearity nreador the streams and working with
multiple mappings oh-offs of the streams are also performed.

3.1 Thesimpletests

The first analysis method used is lexicographical sortinghefstrings to find maximal matching
substrings. Long matches found in the same RNA stream magaitedsimple repetitive error
correction. Before sorting, the multiple initiation seques are merged into two long sequences:
one composed of translated (valid leaders) and the othersfranslated (invalid leader) sequences.
The counts of the maximal substrings in each long sequeedéstad in Table 4 and Table 5 (note:
the sixty-one long matching substring actually indicatesaiching initiator sequence in the set).
The translated and non-translated leader sequence reseltompared to a simple. coli gene

Table 4. Maximal substring length for translated sequence set.

Length | number of subsequences
1 9
2 37
3 138
4 557
5 2240
6 5948
7 7441
8 4356
9 1667
10 537
11 154
12 53
13 9
14 8
16 2
61 1
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Table 5. Maximal substring length for non-translated sequence set.

Length | number of subsequences
1 12
2 33
3 141
4 572
5 2195
6 7544
7 14055
8 11422
9 5066
10 1605
11 500
12 142
13 62
14 19
15 3
16 1
19 1
20 1
21 1
39 1
61 1

sequence (Table 6). The leader and non-leader sequenaesakaexpected, much larger matching
segments than those found in the full gene sequence.

Another simple test is to determine Simple Markov modelgggithe previous elements, what
is the probability distribution on the next element) for theda. We develop models where one and
two preceeding elements determine the next element. Mariamlels are also constructed usimg
offs. For example, if the stream $8s; . . ., then the 1-offs of this stream asgs,4... ands13Ss. . ..
Since codons are three bases long, 2-offs are tried; 1-nffs3zoffs are experimented with to be
complete. At this time, nothing obviously unusual has beemd, though a deeper investigation is
necessary.

3.2 FindingLinear Generators

A linear generator over a given field is a polynomial whichgwtapplied to a sequence of elements
of that field, produces zeros. Linear generators @€(2) are frequently used in communication
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Table 6. Maximal substring length for ilvVE.datE. coligene sequence.

Length | number of subsequences
1 9

OO N OO WN
=
(0}
©

[
o

applications for synchronizing, adding randomness, faraorrection and in cryptography.

Linear generators annihilate the sequence. That is, ifehgpmial is applied to the sequence,
the resulting sequence would be all zeros. For example,etheesice oveGF(2), 110010111, is
annihilated by the polynomiaf® +x+ 1 sinces +s,1+Ss3=0fori=0,...,5.

In DNA/RNA sequences there are four regularly occuring eotitie bases. Therefore the nat-
ural choice for the finite field iSF(22). Letting the integers ,2,3 represent the elements of
GF(2?) (0,1,x,x+ 1), the operator (addition/multiplication) tables are @fvs:

+]o]1]2]3 11213
00123—“—‘—L1123
11]1]0[3]|2

22|31
2 21310(1 o175
313|210

The four basesA, G,C, {T,U}, are first mapped to the integers 0,3. A modified version of
the Berlekamp-Massey algorithm (see [20], page 200 and [44pplied to determine polynomials
and subsequences with high linearity ratios. A linearitjorhere is defined to be the length of the
sequence annihilated over the degree of the minimal polyedannihilating it. For example, if the
stream (oveGF(22)) is 20233202031, the first eight elements are annihilatedkby- 2x* +x°. The
linearity ratio for this is 82 = 4. A linearity ratio for a stream is the sum of the maximal #irigy
ratios, greater than a given bound, for all substrings. Tigkdn the linearity ratio of a stream the
more the elements are linearly dependant on one another.

One problem with the computation of minimal polynomialshe mapping from base to field
element. There are 4 24 possible mappings from the four base elements to the fiefdents.
Which is the best permutation, from a mathematical pergpggttTo answer that question, each
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mapping is applied to the stream and the linearity ratios@mcesponding polynomials are found.
The linearity ratios are identical for mappings which matthhe fixed zero element. So the map-
ping

A G C U]
13 2 0 1|

gave the same linearity ratio for a given sequence as theinpp

[A G C U]
2 3 0 1

The minimal polynomials for these mappings will have the sategree, though the polynomial
may be different. There are four different linearity ratfos each file tested, each linearity ratio
depends on which base is mapped to zero. On the initiationesegs (both translated and non-
translated), the highest linearity ratio occurs when agess mapped to zero. The following are
examples of translated initiation sequences, using thepmgp

A G CU
1 2 0 3

with high linearity ratios, with the bold portion of the semeces being annihilated by the polyno-
mialsx? + x! + 3x% andx® 4 2x! + 2x° respectively:

1103323333113333132124320112132213313233320300231233330130
013112011012210201221231311111182400203310133200111011023

The mapping of cytosine to zero also gives the highest lityeaatios for the fullE. coli gene; the
ratio increases even further when a 2-off analysis is peréok

4 Reverse Engineering EC Encoders, An Optimization Framewor k

4.1 Linear Block Codesand Generator Matrices

Each codewordy, in a (n,k) linear block code’s codebook can be produced using a gemerat
matrix, G, which encodes the information vectar,in a deterministic manner [15]. The relationship
betweeny, v, andG is as follows:

v = uG (8)

whereGisk by nuisl by k andvis 1 by n The parity-check matrix (also referred to as the
dual code 0ofG), H, is a(n—k) by nmatrix that relates to the generator as follows [15, 1]:

GH" =0 (9)

whereHT is the transpose of the parity-check matrix. As its name ssiggthe parity-check matrix
is used to check for transmission errors in the receivedesempr = v+e. In the absence of errors,
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e =0, the syndrome vecta (the n — k symbol pattern that results from multiplying the received
sequence by the transpose of the parity-check matrix) wititvall zero vector:

s=rHT = (v+eH' =vH' =0 (10)

If Cx represents the code book (i.e. contains all codeweydisr a linear(n,k) block code, then
based on Equation 10 we can state the following:

CokH™ = Z (12)

whereZ is the all zero matrix. Therefore, given a set of codewordslpced using a linear block
code, it is feasible to determine the dual colleand ultimately the corresponding generaf@r,
for the codebook. This is the rational used in constructingdr optimization methods for reverse
engineering an EC encoded data stream.

4.1.1 Systematic Codes

To further simplify the process, all linear block codes canaritten in systematic form. For sys-
tematic(n, k) codes,G andH are of the form

G = [IP] (12)

H = [PTilni (13)

whereP is ak by (n—k) matrix andl represents thie by k(or (n—k) by (n—Kk)) identity matrix
[15, 1]. Assuming a systematic code reduces the number afamks in theH matrix by (n— k)>2.
The systematic form also simplifies conversion frbintback toG.

4.1.2 Construction of Optimal Generatorsfor thelnitiation Process

As a simple check of the reverse engineering framework, wiope initial tests using the (7,4)
Hamming code and genomic data frden coli K-12. For a given codebook s€t,x a linear, sys-
tematic block code model is assumed; hefcandH are of the form specified in Equation 12
and Equation 13, respectively. All possible solutionsPdexceptP = Z) are interrogated and the
optimal solution returned. The optimal solution producesiahat optimizes a cost function of the

form: ) )
|Zeros in $ INonzeros in P

S Pl
whereSrepresents the syndrome matrix (each ro aorresponds to the syndrome of a code word
in C,x) andRs+ Rp = 1.0. Typical values foRs andRp are 0.70 and 0.30, respectively.

Fitnes§H|P) = Rs (14)

We test the methodology using tfig 4) Hamming codeboolCramming, , [15]. The algorithm
successfully recovered the generator matrix for {figt) Hamming code. The verification test
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produces a code with a fitness value of one; this is expealme@hammingm is a complete, error-
free representation of the code.

We perform additional tests usilfifj coliK-12 leader sequences. Given the positive results from
the original block code model for translation initiation Bn coli K-12 [18], the systematic parity
check codebookCOriginm(SZV is used as an initial estimate of the set of valid codewonisHe
translation initiation system. We also use two additioradebook setsCongDmi%z) andCleg(&z).
COrigDmi%z) is a reduced subset ﬁbriginaksiz), constructed by selecting a minimum number of code-
words fromConginakw such that each information sequence is represented ondb@ntnimum
Hamming distance value for the code book set is maximizee cHulewords in th€es,, code-
book are the five-base subsets formed from contiguous béses 86S rRNA. Of the three block
code models constructeﬁ‘mg(&z) represented prokaryotic translation initiation the b&ste gen-
erator Giess ,, distinguished between valid and invalid leader region$iwithe Shine-Dalgarno
region, a behavior consistent with the original block codedet [17]. AIthoughGo,igina|<52) and
GOrigDmi%,z) produced regions where there are differences betweenrlaadanon-leader sequence
groups, the behavior of the leader sequences are the invieng®t is expected.

Our initial approach for finding an optim&l that satisfies Equation 11 is not robust. Simple
interrogation of every potential solution is not compuiaélly feasible nor efficient. The basic
algorithm does not take into account potential noise in thta dised to reconstruct the generator
matrix. In order to develop a realistic and feasible aldgonitfor determiningG given a potentially
noisy codebook set, we revisit the inverse coding problemnfan optimization framework.

4.2 An Integer Programming Approach to Solving the Rever se-Engineering Prob-
lem

If Chx represents the code book (i.e., contains all codewgydisr a linear(n,k) block code, then

it follows that for all z € C,x (Wherez = v) we havezH™ = 0. Consequently, a design goal for
determining the dual code is to satisfy this constraint for aflc C, k. A codebook generated from
a set of DNA sequences will probably not satisfy this propdttowever, we can reasonably expect
that it will satisfy this constraint if we explicitly modeters. Thatis(z+e,)HT =0forallz¢ Chk
whereeg, is an error vector that depends nn

We further assume th@,  is a systematic code. For systemdtick) linear block codesii has
the formH = [PT;1n_«], whereP is ak x (n— k) matrix andln_ is the (n— k) x (n— k) identity
matrix. By assuming a systematic code we reduce the degréefdom in our model and exclude
the trivial solutionH = 0 from the set of candidate solutions.

Let £ denote a given set of error vectors. It may be the case thatamibleH exists for all
of the codewords i€,k given the error vectors irE. Consequently, we define our objective as
maximizing the number of codewords @ for which a feasibleH exists. Figure 14 provides an
integer program (IP) formulation for this problem, desedhusing the AMPL modeling language.
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T | ¥ delta| Number of BB nodes
0 16 0
1 10 26
2 7 98
3 8 254
4 8 7

Table 7. Optimization results fo€7 4 codebooks under variable noise.
'S delta’ denotes the number of codewords for which the respi
matrix is feasible.

Unfortunately, this initial formulation contains nonlareconstraints. Specifically, thé_constr
constraints contain multiplicative termsZrandH. The resulting quadratic constraints significantly
complicate the solution of the corresponding IP. Speclficabnlinear bounding techniques are re-
quired to compute lower-bounds for this class of problenthSuethods are not generally available
and the state-of-the-art research tools that have beefogedsfor this problem class can only solve
instances with a limited number of variables.

Consequently, we are currently only able to consider a sfivgtion of the full reverse-engineering
problem that does not incorporate error vectors, whildémigtg the original optimization objective
of maximizing the number of codewords @k for which a feasibleH exists. The IP formula-
tion for this variant, again described using the AMPL mauglianguage, is shown in Figure 15.
Here, all constraints are linear, yielding an integer lmgagram (ILP). Many ILPs can be solved
using commercially available IP solvers such as CPLEX. &sdvers use a branch-and-bound
engine in which lower bounds are computed by relaxing thegiality constraints and optimizing
the resulting pure linear program (LP).

We use CPLEX to solve the ILP formulation for the simplifiedesse-engineering problem.
Specifically, we attempt to construct ‘maximaff matrices for the following codebooksC7 4,
Ci611, andCsp17. For each codebook, we consider both error-free and noisgnia; the noise
variants are constructed by randomly invertingits of each codeword. The results for g,
codebook are shown in Table 7, withvarying from 0 to 4. The number of branch-and-bound (BB)
nodes is indicative of solution cost; however, in all casesgolution time is less than a minute
on a modern PC workstation. A ‘perfedtf matrix (i.e.,H is feasible for all codewords) is easily
identified in the noise-free scenario; as noise is addedtisnoltime increases slightly while the
resultingH are only feasible for roughly half of the codewords.

Although effective for theC7 4 codebook, the current ILP approach fails to scale to theetarg
Ci611 andCgzz 17 codebooks. In the case of tkie 11 codebook, we were able to locate a perfect
feasibleH for the noise-free scenario. However, the computationtigétable onc&d > 1. Our
analysis indicates that the source of the intractabilitthes strength of the lower bound, which in
the current formulation appears quite weak. The result isgetbranch-and-bound tree, such that
nodes are rarely pruned. Another aspect of scalabilityasitlemory required to store solutions at
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param nodul us > 0;

param m > 0; # The number of code words
paramn > 0; # The length of each code word
paramh > 0; # The number of error vectors
paramk > 0; # Length of original encoding
set CodeWordNdx :=1 .. m

set EncodingNdx :=1 n;

set ErrorNdx :=1 .. h;
set range := 0 .. (rodulus-1);
set ParityNdx :=1 .. (n-k);

par am r { CodeVWor dNdx, Encodi ngNdx} i nt eger;

par am e{ Err or Ndx, Encodi ngNdx} i nteger;

param v{i in CodeWordNdx, g in ErrorNdx, j in EncodingNdx} = v[i,g,j] =r[i,j]l+e[g,]];
var H{Encodi ngNdx, ParityNdx} >= 0;

var z{CodeWor dNdx, Encodi ngNdx} >= 0;

var del t a{ CodeWor dNdx} bi nary;

var Del t a{ CodeWor dNdx, Error Ndx} bi nary;

var b{CodeWor dNdx, ParityNdx} integer >= 0;

var w{ CodeWor dNdx, ParityNdx} integer >= 0;

var y{CodeWr dNdx, ParityNdx} integer >= 0;

maxi m ze objective: sun{i in CodeWrdNdx} delta[i];

subject to boundl{j in EncodingNdx, p in ParityNdx}: Hj,p] <= nmodul us-1;
subj ect to bound2{i in CodeWordNdx, j in EncodingNdx}: z[i,j] <= modul us-1;
subject to z_defn{i in CodeWrdNdx, j in Encodi ngNdx}:

z[i,j] = sun{g in ErrorNdx} Delta[i,g] * v[i,g0,j];
subject to Hconstr{i in CodeWrdNdx, p in ParityNdx}:

sum{j in Encodi ngNdx} z[i,j]*H]j,p] = b[i,p];
subject to Mdulus_constr1{i in CodeWrdNdx, p in ParityNdx}:

b[i,p] - nodulus*y[i,p] <= (modulus-1)*(1 -delta[i]);
subject to Mdulus_constr2{i in CodeWrdNdx, p in ParityNdx}:

b[i,p] - nmodul us*y[i,p] >= 0;
subject to HL{i in EncodingNdx, p in ParityNdx : i ==p }: Hi,p] =1,
subject to H2{i in EncodingNdx, p in ParityNdx : i !=p and i<=n-k}: Hi,p] = 0;

Figure 14. An IP formulation to maximize the subset@®f for which
a feasible dual codd exists given a set of error vectors.
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param nodul us > 0;

param m > 0; # The nunber of code words
paramn > 0; # The length of each code word
paramk > 0; # Length of original encoding

set CodeWordNdx :=1 .. m

set EncodingNdx :=1 .. n;

set range := 0 .. (rnodulus-1);
set ParityNdx :=1 .. (n-k);

par am r{ CodeWr dNdx, Encodi ngNdx} i nt eger;

var H{ Encodi ngNdx, ParityNdx} >= 0;

var z{CodeWor dNdx, Encodi ngNdx} >= 0;

var del ta{ CodeWor dNdx} bi nary;

var b{CodeWor dNdx, ParityNdx} integer >= 0;

var y{CodeWor dNdx, ParityNdx} integer >= 0;

maxi m ze objective: sum{i in CodeWrdNdx} delta[i];

subject to boundl{j in EncodingNdx, p in ParityNdx}: Hj,p] <= nodul us-1;
subject to bound2{i in CodeWordNdx, j in EncodingNdx}: z[i,]j] <= modul us-1;

subject to Hconstr{i in CodeWrdNdx, p in ParityNdx}:
sun{j in EncodingNdx} r[i,j]*Hj,p] = b[i,p];

subject to Mdulus_constrl{i in CodeWrdNdx, p in ParityNdx}:
b[i,p] - nmodulus*y[i,p] <= (modulus-1)*(1 -deltali]);

subject to Mdulus_constr2{i in CodeWrdNdx, p in ParityNdx}:
b[i,p] - modulus*y[i,p] >= 0;

subject to HL{i in EncodingNdx, p in ParityNdx : i == p }:
Hi.p] =1

subject to H2{i in EncodingNdx, p in ParityNdx : i != p and i<=n-k}:
Hi,p] =0

Figure 15. An IP formulation to maximize the subset®f for which
a feasible dual codd exists assuming no errors.
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each branch-and-bound node, which scales as the proddm odtleword length and the number
of codewordam. Excessive memory requirements effectively preventstieolun the case of the
Cs3217 codebook, independent of

To achieve scalability to realistically sized biologicgstems, several challenges remain. To
solve the simplified variant of the reverse-engineeringlam, different problem formulations (in
order to strengthen the lower bounds) and enhancementsstingxsolver technology (to address
memory concerns) are required. To solve the full reverggneering problem, significant and
fundamental advances in solver technology (in order toeskalsge non-linear IPs) is required.

5 Conclusion

The initial phase of our investigation into methods for mestoucting error control codes for engi-
neered and biological data streams has produced addifimsight including: an information the-
oretic understanding of the replication channel and murnatproduced by replication, a modified
Shannon entropy approach to characterizing coding rat&Coéncoded data, an initial crypto-
graphic analysis of translation regulatory sites, and aimipation framework for inverting EC
codes. Current results support the initial approach prghdsr EC code reconstruction and exem-
plifies the difficulty of the code reconstruction problem.r@teliminary studies provide motivation
and define a roadmap for completing our exploratory invasbg into the EC code reconstruction
problem for engineered and genetic systems. Future tackslan

e Expansion of mutation based capacity calculations, ad@myfor number of replication cy-
cles and considering the effects of mutation hotspots. Welsd investigate the relationship
between replication channel capacity and pathogenicity.

e Development of Shannon entropy-based methods for detergmirfor block codes andn, k)
for convolutional codes. Application of these methods toAIRNA data and development
of computationally efficient approaches to implement theomy-based analyses.

e Further investigation into Markov models for approximgtencoded genetic and engineered
data streams. Markov models are particularly important wbensidering convolutional
codes.

¢ Further development of algorithms for discovering lineangrators in nucleotide and engi-
neering sequences.

e Development of techniques for computing lower-bounds Rofdrmulation of the EC recon-
struction problem. Continued development and implemiamadf the ILP inverse coding
problem formulation.

e Development and implementation of a parallel genetic @igor (GA) and genetic program
(GP) formulation of EC reconstruction problem.
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Successful research and development of automatic reactistr algorithms for EC encoded
data will provide insights applicable to communication ieegring and computational biology.
Asynchronous methods for EC decoding of intercepted ornmdete data transmissions can be
useful for deep space communication applications and leadadre efficient encoding/decoding
techniques for EC systems. Coding-based informatics tmoisbe used to correlate base composi-
tion and location of regulatory sequences to the overallleggry response of key genetic processes.
The knowledge gained will contribute to our quantitativelerstanding of biological systems and
provide insight for potentially modifying organisms of@nést for applications in areas of national
need, including bio-sensors, bio-remediation and bimteam defense. The ability to reconstruct
the code model for translation regulatory sites in yeastgaumsms used for bio-sensor applications
will enable scientists to algorithmically design organispecific regulatory sites that can increase
the expression of engineered reporter genes. Ultimatehaepe to acquire the knowledge for
building “programs” or genomes for bio- and nano-technglagplications.
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